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Unstructured Multigrid Simulations of Turbulent
Launch Vehicle Flows Including a Propulsive Jet
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and
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A study of the flowfield around axisymmetric launch vehicles in different flight conditions is performed. In par-
ticular, the first Brazilian Satellite Launcher second-stage configuration is analyzed considering the case with and
without a propulsive jet in the vehicle base. The study is performed using a cell-centered finite volume formulation
on unstructured grids. Different spatial discretization schemes are compared, including a centered and an upwind
scheme. The upwind scheme is a second-order version of the Liou flux vector-splitting scheme. Turbulence effects
are accounted for using two one-equation turbulence closure models, namely, the Baldwin and Barth and the
Spalart and Allmaras models. An agglomeration multigrid algorithm is used to accelerate the converge to steady
state of the numerical solutions. The numerical results obtained are compared with experimental data, as well as

with previous structured grid simulations.

Nomenclature
A;r = turbulence model constants
CQ) = convective operator
i = turbulence model constants
D)) = dissipation operator
= distance to wall
E® F® = inviscid flux vectors
EV FY = viscous flux vectors
e = total energy
fi = turbulence model damping functions
H = axisymmetric source term
M = freestream Mach number
P = production term
p = static pressure
] = vector of conserved variables
qr» 9 = heat flux vector components
Re = Reynolds number
Ry = turbulent Reynolds number
r = radial coordinate
S = surface
t = time
u, = Cartesian component of the velocity vector
in the r direction
u, = Cartesian component of the velocity vector
in the z direction
Vv = volume
\4 = velocity vector
V(Q)) = viscous operator
z = axial coordinate
nt = nondimensional wall coordinate
K = von Kdrmén constant
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w = laminar dynamic viscosity coefficient
Wy = turbulent dynamic viscosity coefficient
v = laminar kinematic viscosity coefficient
v = turbulent kinematic viscosity coefficient
0 = density

Pw = wall density

o; = turbulence model constants

T,r, Trz, T;; = components of the viscous stress tensor
Tw = wall viscous stress

|w| = magnitude of the vorticity vector
Subscripts

i = ith volume

ik = edge between volumes i and k

o0 = freestream conditions

Introduction

N the context of the development of computational tools for the

simulation of launch vehicle flows, previous work! has treated
the flowfield around the first Brazilian Satellite Launcher (VLS).
Viscous turbulent flows in the forebody region,'? as well as in the
afterbody region* of the vehicle, were considered using a structured
grid approach with centered implicit schemes and an axisymmet-
ric formulation. Moreover, an unstructured grid approach was used
to simulate inviscid flows over the VLS forebody in Ref. 5. This
unstructured grid capability’ consisted of an axisymmetric, finite
volume, cell-centered solver, in which a centered and an upwind
scheme were implemented and convergence acceleration was ob-
tained by an agglomeration multigrid procedure. The present work
is, then, an extension of the existing capability toward the treatment
of viscous turbulent flows over the VLS, including the forebody
region and the afterbody region with and without a propulsive jet.
Hence, some of the cases studied in Refs. 3-5 are analyzed again
with this new implementation.

Unstructured grids allow for a much greater flexibility in terms
of control of computational mesh refinement than a structured grid
approach. They can provide better resolution of flow features with
lower computational cost through the use of adaptive meshes. More-
over, the use of an axisymmetric formulation is indicated due to the
axial symmetry of the VLS second stage and to the fact that the
vehicle is designed to fly at low angles of attack. In addition, the ax-
isymmetric formulation represents a three-dimensional flow, but it
has a computational cost equivalent to a two-dimensional simula-
tion. Because high-speed flows including shock waves are among
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the flows of interest, an upwind spatial discretization scheme is
employed to increase the solution accuracy. The upwind spatial dis-
cretization scheme implemented is a second-order accurate version
of Liou’s AUSM™ scheme.®’ Moreover, the use of one-equation
instead of algebraic turbulence closure models is necessary for the
adequate solution of the flows of interest, as observed in previous
work.>* The two turbulence closure models used are the Baldwin
and Barth® and the Spalart and Allmaras® models.

The time-stepping method used to advance the solution of the
governing equations in time in the present work is a fully ex-
plicit, second-order accurate, five-stage Runge—Kutta scheme (see
Ref. 10). As the problems of interest are steady-state problems, a
variable time stepping option with constant Courant-Friedrichs—
Lewy number has been implemented to accelerate convergence.
Experimental data and results from a structured mesh solver** are
used for comparisons with the present numerical simulations. Com-
parisons between the results obtained with the centered and the
upwind spatial discretization schemes and between the results with
the two turbulence closure models implemented are also presented.
Solutions over the forebody and over the afterbody regions were ob-
tained. Furthermore, the afterbody region was treated considering
cases with and without a propulsive jet.

Governing Equations

The governing equations for the aerodynamic flows of interest
are the azimuthal-invariant Navier—Stokes equations in cylindrical
coordinates, which can be written in integral form for the case of no
body rotation as

i/QdV—i—/(Erdr—Frdz)-i—/HdV=O (1)
at \4 N \4

In this expression, E=E® — E® and F =F" — F")_ The defini-
tions of Q, H, E?, F©, E™ and F® are
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A suitable nondimensionalization of the governing equations is
assumed to write Eq. (2). In the present case, the choice of reference
state proposed in Ref. 11 is adopted. In this equation, the Reynolds
number is defined in its usual form as

Re = 1pssqos/ Moo 3

where [ is the reference length, po, is the freestream density, ¢
is the magnitude of the freestream velocity vector, and (i, is the
molecular viscosity coefficient at the freestream temperature.

With the use of a cell-centered-based finite volume scheme, the
discrete conserved variable vector is defined as an average over
the cell of the continuous properties. Hence, for the ith volume, the
discrete property vector is

1
Qizvi/:/iQdV @)

The definition of the discrete vector Q; can be used to rewrite Eq. (1),
resulting in an equation that has to be numerically implemented,
that is,

a
E(ViQi) +/ (Erdr — Frdz)+V,H; =0 3)
Si

where H; = H(Q;).

Turbulence Modeling

The correct account for the viscous effects in the present case
involves the implementation of an appropriate turbulence closure
model. The turbulence closure models implemented in this work
were the Baldwin and Barth® and the Spalart and Allmaras® one-
equation models. These models attempt to avoid the need to compute
algebraic length scales, without having to resort to more complex
two-equation, or k—e-type, models. The models were implemented
in the present code precisely as described by the Baldwin and Barth
original work® and by the Spalart and Allmaras original work® for
the case with no laminar regions.

The extension of both models for compressible flows was ob-
tained simply by multiplying the kinematic turbulent viscosity co-
efficient by the local density, as indicated in Refs. 8 and 9. Moreover,
the turbulence model equation is solved separately from the other
governing equations in a loosely coupled fashion.

The Baldwin and Barth model partial differential equation, ob-
serving the nondimensionalization adopted, is

DR = My,
(BZT) = (ngfz—Csl) VRTP+R_€
(o )i - oo -voio
x| lv+— V(VRT)_U_(VVt)'v(VRT) (6)

In Eq. (6), (D/Dt)() = (3/9t)() + V - V() is the material derivative,
which contains the time derivative and convective terms; the first
term on the right-hand side of the equation is the production term
and the terms between the brackets are the diffusion terms. This
equation is solved for the vRy variable, and the eddy viscosity is
calculated as

i = pcyDiDy(VRy) (7

where the damping functions D;and D, are designed to allow the
model to be used in the near-wall region and are given by

Dy =1—exp(—n*/AT) 8)
Dy=1-— exp(—n*/A;) )
with
+_ [Remy d (10)
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In Eq. (11), the usual Einstein notation and sum convention are
used. The components of the velocity vector and coordinate system
directions are u; and x;, respectively. Furthermore, v, = i,/ p is the
equivalent of a kinematic eddy viscosity.

The Spalart and Allmaras model partial differential equation, ob-
serving the nondimensionalization adopted, is
Dv - M
E = CbIS v + R—O:

1 . . 517
<\ AV 0DV (VD ) — e ful < (12)
Again, D/Dz() is the material derivative, and the first term on the
right-hand side of Eq. (12) is the production term. Moreover, the
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last term of Eq. (12) is the destruction term, and the other terms are
the diffusion terms. Equation (12) is solved for the variable ¥, and
the eddy viscosity is calculated as

M = PV fu1 13)

where the function f,; is a damping function used to treat the buffer
layer and viscous sublayer properly. This function is given by

Soi :X3/(X3+031) (14
where
X=v/v (15)

The production term is based on the vorticity, and it can be written
as

S=S+4 (Ms/Re)H/k2d?) fi (16)

where

S = ol = /€€ a7
and the rotation tensor €2;; is given by

du;  0u;
Q= — — (18)
’ 8Xj ax,-

Spatial Discretization Schemes

The purpose of the spatial discretization scheme is to evaluate
numerically the surface integral in Eq. (5). This approximation of
the integral is different for the inviscid and for the viscous flux terms.
In this work, although the viscous terms are always treated using a
centered scheme, the inviscid terms are treated using a centered or
an upwind scheme. The approximation of the integral of the inviscid
flux vectors is called convective operator, which is defined as

C(Q,«)%/ (E(i)rdr—F(i)rdz)

i

n
= [Ef;()r,-kArik —Ff;()r,-kAz,vk] (19)
k=1
Similarly, the approximation of the integral of the viscous flux vec-
tors is called the viscous operator, and is defined as

V(Q,-)E/ (E(”)rdr—F(”)rdz)

i

= Z [Efi)r,-k Ary — FOry AZik] (20)
k=1

For the centered scheme, the convective operator can be written as

n

C@) =Y [EVQw rutru—FO Qi) radz] (1)

k=1

where Q;; is the arithmetic average of the conserved properties in
the cells that share the ik interface and n is the number of edges
that form the ith control volume. The terms Ar;;, Az;, and r;;, are
calculated as

Arig = Fpa — I'nts AZik = Zn2 — Znl

Fik = (rm1 + 1) /2 (22

where (z,,1, r,1) and (2,2, r,,») are the vertices that define the interface
between cells i and k. A schematic representation of the node and
edge nomenclature is presented in Fig. 1.

The spatial discretization procedure presented in Eq. (21) is equiv-
alent to a central difference scheme. Therefore, artificial dissipa-
tion terms must be added to control nonlinear instabilities.'? In the

Fig. 1 Node and edge nomenclature.

present case, the artificial dissipation operator is formed as a blend
of undivided Laplacian and biharmonic operators.!%!3 Moreover,
the scaling terms of the artificial dissipation model were imple-
mented following two approaches: Jameson and Mavriplis’s work!?
and Mavriplis’s work."?

The Liou®’ scheme implementation follows the work in Refs. 5
and 14 for both the first- and second-order version of the scheme. The
second-order scheme is obtained by following exactly the same for-
mulation of the first-order version, except that the left and right states
are obtained by a MUSCL extrapolation of primitive variables.'> In
Ref. 14, a one-dimensional stencil normal to the control volume
edge is constructed to obtain the extrapolated interface properties.
In this work, cell-averaged property gradients are computed and
used to calculate the extrapolated properties,'® which is a different
approach from that used in Ref. 14. With the property extrapolation,
the state variables are represented as piecewise linear within each
cell, instead of piecewise constant. Hence, to avoid oscillations in
the solution due to the property extrapolation, it is necessary to use a
limiter. The minmod limiter was implemented, following the work
in Ref. 16. Moreover, the limiter value is frozen after a certain num-
ber of iterations to obtain a better convergence rate, as described in
Ref. 17.

A centered discretization scheme was also used for the viscous
operator, such that it can be written as

n a
V©Q) = ,;‘ [EW (Q,-k, (%) Vk>r,-mr,zk

—F(U)(Qik, (%) )VikAZik] (23)
7/ ik

In the preceding expression, Q;; is, again, the arithmetic average of
the conserved properties in the cells that share the ik interface and
(0Q/0x;)x is the arithmetic average of the conserved properties
derivatives in the cells that share the ik interface. These derivatives
are computed in each volume considering that the discrete derivative
in a given volume is the average on the volume of the derivative and
then using Green’s theorem to transform the computation of the
derivative into the computation of a line integral.

Multigrid Implementation

The agglomeration multigrid'® procedure was selected among
the different options for multigrid implementation on unstructured
meshes.!%!>!3 This approach does not present the mesh limitations
of a nested grid approach!® nor the complexity of the calculation of
the mesh intersections on a nonnested grid approach.'® '3 Moreover,
it provides a fully automatic generation of the coarse meshes in
such a way that only the fine mesh has to be provided as input
data. Furthermore, the agglomeration multigrid approach maintains
the convergence acceleration characteristics of the other multigrid
procedures.

Because an agglomeration multigrid strategy was selected, the
coarse meshes for the multigrid procedure are generated by agglom-
erating or grouping fine mesh volumes to form one coarse mesh
volume. A “seed” volume is chosen in the fine mesh and, then, all
of the volumes that have a node or an edge in common with this
seed volume are grouped, and they form the coarse mesh volume.
Another seed volume is selected, and the agglomeration procedure
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Fig. 2 Mesh simplification by the node elimination procedure.

continues grouping all of the fine mesh volumes. Note that during
the agglomeration procedure only the volumes that have not been al-
ready agglomerated may be grouped to form a coarse mesh volume.
This is a necessary condition to guarantee that there is no volume
overlapping in the coarse mesh.

Better coarse mesh quality can be obtained if the selection of the
seed volumes is not random. Therefore, a list containing all of the
fine mesh volumes is generated before the agglomeration procedure.
In this work, the list is formed such that the first entries are the
volumes next to a boundary. This approach is very simple, easy
to implement, and adds very little computational cost. Although it
does not necessarily provide the best agglomeration of the interior
volumes, it results in good-quality coarse mesh volumes close to the
boundaries.

Because the spatial discretization scheme used in this work is
linear, a simplification can be made in the coarse meshes. This
simplification consists in eliminating the nodes that belong to only
two volumes. The justification for this procedure comes from that
the flux passing between the two volumes is the same whether the
boundary separating the two volumes is discretized by one or many
edges, provided that the discretization scheme is linear. Therefore,
a significant amount of storage space can be saved by performing
this mesh simplification. An example of such node elimination is
presented in Fig. 2, where the darker lines represent the original
boundary separating two coarse volumes and the dashed line repre-
sents the boundary edge after the node elimination.

Although the mesh simplification described earlier can reduce
the total storage space required by the code, it brings a complication
related to the connectivity of the nodes in the mesh. Because some
nodes in the mesh are not used, it is necessary to ensure that the
remaining nodes are properly counterclockwise oriented to have
the normal vectors of each edge correctly pointing outward. This is
accomplished using the node orientation in the fine mesh volumes
to direct the ordering of the nodes in the coarse mesh volumes.

The agglomeration procedure can be summarized, then, in three
steps. The first step consists in defining the list of volumes of the
fine mesh. In the second step, the fine mesh volumes are agglomer-
ated to form the coarse mesh volumes, following the list generated
in the first step. During this step, the mesh simplification described
is adopted, and only the nodes that belong to three or more coarse

mesh volumes are stored. The third and final step is the verification
of the node orientation in each volume of the coarse mesh and the
correction of the orientation where it is needed. The actual imple-
mentation of this agglomeration procedure was designed to require
the minimum amount of storage possible. Therefore, the only extra
information that has to be stored in each mesh, besides the usual in-
formation associated with the solution procedure, is the number of
the coarse mesh volume that contains each of the fine mesh volumes.

In the multigrid procedure, the restriction operator transfers a
variable from a fine mesh to a coarse mesh. The operator used in the
present work for the conserved property restriction is the volume-
weighted average. Therefore, the restricted conserved properties of a
coarse mesh volume are equal to the sum of the conserved properties
of all of the fine mesh cells that form this coarse mesh volume,
weighted by their volumes. On the other hand, the restriction of
the residuals is accomplished by simple addition of the fine mesh
residuals. Hence, the residual of a coarse mesh volume is equal

to the sum of the residuals of all of the fine mesh volumes that

are contained by this coarse mesh volume. The restriction operator
for the residuals is different from the restriction operator for the
conserved properties because the residuals can be interpreted as line
integrals in finite volume schemes. Consequently, as the residuals
of the fine mesh are summed, the interior edge contributions will
cancel each other, leaving only the contribution of the edges that
form the coarse mesh volume.

The prolongation operator, in opposition to the restriction opera-
tor, transfers a variable from a coarse mesh to a fine mesh. As usual
with typical multigrid implementation, only the conserved property
corrections have to be prolonged. Hence, only one prolongation op-
erator has to be defined. In this work, an averaging operator was
used to obtain the corrections in the fine grids. The averaging op-
erator consists in, for each edge of the fine mesh, arithmetically
averaging the corrections of the coarse mesh volumes correspond-
ing to the two volumes that contain the edge. For each volume, then,
these averaged corrections are summed, and the result is divided by
the number of edges of the volume. This operator is very easy to
implement, and it has the advantage of being able to transfer a lin-
ear distribution with less error than a direct injection prolongation
operator.

Results and Discussion

The computational mesh used in the forebody cases is presented
in Fig. 3, as well as the corresponding agglomerated meshes used for
the multigrid procedure. Although this mesh is composed of quadri-
lateral cells and could be used in a structured mesh approach, the
authors emphasize that this mesh was treated in a fully unstructured
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Fig. 3 Computational mesh for VLS forebody and three agglomerated
meshes obtained from this mesh.
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Fig. 4 Comparison of pressure coefficient distributions with the cen-
tered scheme; M, =0.90 and Re =20 x 10%; Jameson and Mavriplis’s
artificial dissipation model used unless otherwise stated.

fashion. Actually, the computational grids used in the present work
are the same used in Refs. 3-5 to allow a direct comparison between
the present results and the results obtained in these references. More-
over, the grids used in the forebody simulations follow the guidelines
of Refs. 1 and 2 in which a detailed study of the effect of various grid
parameters, such as number of points, stretching, and distance of the
first point off the wall, on the accuracy of the numerical solutions
was performed.

A comparison of pressure coefficient distributions over the VLS
for the cases using the centered scheme and both the Baldwin and
Barth® and the Spalart and Allmaras® turbulence closure models is
presented in Fig. 4. This case considers M., = 0.90 and viscous tur-
bulent flow with Re =20 x 10°. In Fig. 4, the Baldwin and Barth
model results are indicated by B-B, whereas the Spalart and All-
maras model results are indicated by S-A. Moreover, for the sim-
ulations shown in Fig. 4, the Jameson and Mavriplis artificial dis-
sipation model'? is used in all cases except for one, in which the
Mavriplis model'? is used. The pressure coefficient distribution for
the Euler case presented in Ref. 5 is also shown in Fig. 4. The
results for both the Baldwin and Barth and Spalart and Allmaras
turbulence closure models are very similar, and they are also sim-
ilar to the Euler results. Nevertheless, the viscous turbulent cases
do not present the overexpansion and overcompression shown by
the Euler results at the forebody cylinder—boattail intersection re-
gion and at the boattail-afterbody cylinder intersection region, re-
spectively. Moreover, the results using the Mavriplis artificial dis-
sipation model instead of the Jameson and Mavriplis model are in
better agreement with the experimental results than the other results
presented in Fig. 4. This behavior is to be expected because the
Mavriplis artificial dissipation terms are weighted by the maximum
characteristic speed in the direction normal to the control volume
edge. Such construction of the artificial dissipation terms adds a
more controlled amount of numerical dissipation to the scheme,
and hence, it yields better results.

The results obtained with Liou’s spatial discretization scheme and
both the Baldwin and Barth and the Spalart and Allmaras models are
presented in Fig. 5. The corresponding results for the inviscid case,
presented in Ref. 5, as well as the results with the centered scheme
with the Mavriplis artificial dissipation model, presented in Fig. 4,
are also shown in Fig. 5. The solution with the centered scheme and
the Mavriplis artificial dissipation model is very close to the solution
with Liou’s scheme, as one can see in Fig. 5. However, a compar-
ison of flowfield property contours indicates that the solution with
Liou’s scheme provides a sharper representation of the shock waves
and expansion regions, and it also showed better agreement with
experimental flow visualization schlieren photographs.’ The flow
visualization figures are not included here because a similar behav-
ior was already observed with the inviscid calculations reported in
Ref. 5. Hence, despite the slight tendency of presenting spikes at
compression and expansion corners, the turbulent calculations with

1.5 4 ----- Liou Euler
——Liou 20 S-A
1 ——Liou 20 B-B

= Centered B-B Mavriplis

0.5 - ¢ Experimental

0 0.05 0.1 0.15 0.2 0.25 0.3
x/L

Fig. 5 Pressure coefficient distributions with Liou’s second-order
scheme, M. =0.90 and Re =20 x 105,

Fig. 6 Turbulent viscosity contours for the case with Liou’s second-
order scheme and Spalart and Allmaras model, M, =0.90 and
Re=20 x 10°.

the Liou scheme provide numerical results that seem to be in better
overall agreement with the experimental data. Moreover, similarly
to the behavior observed with the centered scheme, the results with
the turbulence models do not present the dramatic overexpansions
and overcompressions observed in the inviscid results.

Another important result obtained for the viscous turbulent case
is the turbulent viscosity distribution on the flowfield. Hence, the
turbulent viscosity contours for the case using Liou’s spatial dis-
cretization scheme and the Spalart and Allmaras turbulence closure
model are presented in Fig. 6. In Fig. 6, one can observe that mean-
ingful values of turbulent viscosity are concentrated in the bound-
ary layer close to the body, where the shear stresses are relevant.
Moreover, the boundary layer thickens from the forebody to the af-
terbody. This behavior is exactly the expected one for this case. A
result similar to that of Fig. 6 was obtained with the Baldwin and
Barth turbulence closure model, although some oscillations in the
turbulent viscosity were observed at the edge of the boundary layer.
The y™ value for the first grid point off the wall in this case was of
the order of 0.6 throughout the complete forebody region. For the
turbulence models here contemplated, it is believed that this value
of y* is adequate.

The mesh used to obtain the last results presented for the VLS was
the mesh presented in Fig. 3. As already mentioned, this mesh was
generated from a structured mesh. This structured mesh was, then,
used to obtain numerical results for the same case with M., =0.90
and Re =20 x 10° but using the structured grid code developed in
Refs. 3, 4, and 19. A comparison between the structured and the
unstructured results is shown in Fig. 7. Both results were obtained
using the centered spatial discretization scheme and the Baldwin
and Barth turbulence closure model. The result corresponding to
the unstructured mesh shown in Fig. 7 is the same result presented
in Fig. 4 for the case using the Mavriplis artificial dissipation model.
From the comparison presented in Fig. 7, one can see that the results
using both mesh approaches are very similar. This was expected be-
cause, besides the mesh topology, a similar formulation was used in
both cases. Moreover, the unstructured mesh results are in a slightly
better agreement with the experimental data.
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The afterbody of the VLS second stage is treated initially as a sim-
ple base, that is, without a propulsive jet at the vehicle base. This case
considers a freestream Mach number of 0.5 and a Reynolds num-
ber of 20 x 10°. Moreover, the centered scheme with the Mavriplis
artificial dissipation model is used, and the turbulent effects are ac-
counted for by the Baldwin and Barth turbulence closure model.
The mesh used in this case is presented in Fig. 8, and it is an ex-
tension of the forebody mesh show in Fig. 3 that also includes the
afterbody region. This mesh has a grid point concentration near the
base region to capture the boundary layer close to this wall. Studies
of grid refinement and grid topology were carried out in Refs. 4 and
19. In Refs. 4 and 19, the authors show that adequate refinement and
grid stretching, both in the streamwise and crossflow directions, are
of fundamental importance to capture correctly the flow structures
that appear in the base region and in the jet. Because the present
work used the same final meshes reported in Refs. 4 and 19, the
authors did not repeat the complete mesh refinement study in the
current case. Furthermore, one of the objectives of the present ef-
fort is to compare the unstructured grid results here reported with
the previous structured calculations in Refs. 4 and 19. The pressure
contours in the afterbody region for this case are presented in Fig. 9.
These contours are very similar to the ones obtained in Refs. 3 and
19 with the structured grid solver for the same case and using the
same turbulence model formulation.

The results shown in Fig. 9 reproduce the general trend of the
expected behavior of the flow. The flow detaches from the body at

2~
15 4 — Unstructured
— Strutuctured
1 * Experimental
0.5
o 0
0.5
-1 4
-1.5 1 /
-2 T T T T T 1
0 0.05 0.1 0.15 0.2 0.25 0.3
x/L

Fig. 7 Comparison of pressure coefficient distributions with previous
structured results, Mo =0.90 and Re =20 x 10°.
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the base edge and forms a recirculation bubble in the near wake.
This separated region ends in a stagnation point downstream of the
base. The flowfield described can be seen in Fig. 10, in which a
streamline plot of the near wake with the separated region is shown.
A quantitative comparison of the results with experimental data is
presented in Table 1, in terms of the axial position of the rear stag-
nation point. The position is measured along the centerline from
the vehicle base and is presented nondimensionalized by the after-
body diameter. The experimental data were obtained from Ref. 20
for cylindrical afterbodies, and the errors obtained in the numer-
ical results are of approximately 13%. These errors are not com-
pletely unexpected because the authors of Ref. 20 indicate that the
near-wake development is dependent on the flow conditions ap-
proaching the separation point. Therefore, because the forebody in
the present work is different from the one used in the experiments
of Ref. 20, the boundary layer in the proximity of the separation
point is also different, resulting in the differences in the near wake.
Moreover, the results obtained with the unstructured calculation
were almost coincident with the ones obtained with the structured
grid approach.

The cases that include a base with a propulsive jet considered
in this work are always of underexpanded sonic or supersonic jets,
and the expected jet structure is presented in Fig. 11. Expansion
waves propagate downstream from the jet exit, resulting in a jet area
increase. These expansion waves reflect at the centerline as com-
pression waves and cause a jet area reduction farther downstream.
The area increase is consistent with the jet acceleration because the
jet is sonic or supersonic. Moreover, the area reduction causes a jet
deceleration, which is achieved by a normal shock wave, also called
a Mach disk. A system of oblique shock waves also forms to adjust
the flow direction next to the jet boundaries. After the Mach disk,

Table 1 Position of rear stagnation point behind the body base?

Case description Position, x/ D

Present unstructured results 1.39
Previous structured results'” 1.37
Experimental data?® 1.21

"My =0.5 and Re =20 x 10°.
D is the afterbody diameter and x is measured from the body base along the
downstream centerline.

Fig. 10 Streamlines in the afterbody region for case without propulsive
jet, Moo =0.50 and Re =20 x 10°.

0.75
0.74
0.73
0.72
0.71
0.7

0.69
0.68
0.67
0.66
0.65

| R T

16 17 18

19 20 21'

Fig. 9 Pressure contours in the VLS afterbody region without propulsive jet, M, =0.50 and Re =20 x 10°.
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the flow is subsonic and, therefore, accelerates as a result of the area
reduction, until it becomes sonic again. After that, depending on the
jet-to-freestream pressure ratio, the complete jet structure repeats
itself.

The parameters indicated in Fig. 11 are used to compare the nu-
merical and the experimental results. These parameters are diameter
of the jet exit, d, initial inclination of the jet boundary &, crossflow
diameter of the normal shock wave or Mach disk, S, position of the
normal shock wave, [, and length of the first periodic structure, w.
However, note that this is the structure of a freejet. The presence of
a high-speed freestream flow can change this structure because the
freestream flow can inhibit the jet expansion. Because most of the
experimental results found in the literature are for jets discharging
in still air, some tests with very low freestream Mach numbers were
performed for comparison. However, the real interest of this work
is on supersonic freestream conditions; thus, cases with these con-
ditions will also be shown. The computational mesh used for the
jet cases is presented in Fig. 12, which shows only the afterbody
region. This mesh has essentially the same number of grid points
as the one shown in Fig. 8, except that it has a more uniform point
distribution in the afterbody region, with less refinement in the near
wake in the direction normal to the base.

To simulate freejet conditions, a freestream Mach number equal to
zero should be used. However, the nondimensionalization adopted
yields terms that are divided by the freestream Mach number, and

S ture in immediate vicinity of
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Fig. 12 Computational mesh in the afterbody region for the cases in-
cluding propulsive jet on vehicle base.

therefore, M, cannot be equal to zero to avoid numerical problems.
Hence, M, = 0.01 was chosen for the freejet cases. The Mach num-
ber contours for a case, with M, =0.01, Mje; = 1.0, pje; = 10po,
and Tjy =T, is shown in Fig. 13. In this case, as well as in all
cases considering a propulsive jet, the Liou spatial discretization
scheme was used. Moreover, the Baldwin and Barth turbulence clo-
sure model was used to capture properly the turbulence effects. An
excellent qualitative agreement has been obtained between the nu-
merical solution and the expected jet structure shown in Fig. 11. A
very good quantitative agreement was also obtained, as one can see
in Table 2. The experimental results shown in Table 2 were obtained
from Ref. 21. Discrepancies between the present computational re-
sults and the experimental data are usually less than 13% for all
parameters analyzed.

The freestream conditions considered for the first case run in-
cluding a propulsive jet on the vehicle base and a nonstill freestream
were Mach number of 0.5 and Reynolds number of 20 x 10°. The
jet conditions adopted in this case were Mach number of 1.0 and
static pressure and temperature three and two times, respectively, the
corresponding freestream quantities. The Mach number contours in
the base region for this case are presented in Fig. 14. In Fig. 14, a
jet structure very similar to the expected one, presented in Fig. 11,
can be observed, showing a very good qualitative comparison with
experimental results. Furthermore, this case was also run in Refs. 4
and 19 using a structured grid approach, and the results obtained
in the present work were very similar to the ones shown in those
references.

Flow conditions, which are representative of the actual VLS
flight regimes, were also simulated. In this test, the correspond-
ing freestream and jet properties result in more complex flowfields
and represent a more severe simulation case. The flow proper-
ties that are representative for the VLS second-stage flight condi-
tions are Mo, =4.9, Mio =4.0, pje =112.0 py, Tt =4.6 T, and
Re =20 x 10°. The Mach number contours for this case are shown
in Fig. 15. Observe that the jet expansion is very large in this case,
and the plume structure seems to be similar to what can be observed,
for instance, in Fig. 14. However, the computational domain does
not extend far enough downstream to capture the normal shock and
all of the downstream portions of the plume structure. Neverthe-
less, from the point of view of the accuracy of the solutions here
presented, this should not cause any problems because the flowfield
is completely supersonic throughout the entire exit plane. There-
fore, whatever flow structures are supposed to appear downstream
of the computational exit plane cannot influence the present com-
putational domain. Furthermore, as one could expect, the very high

Table 2 Comparison of the jet parameters with experimental
results for a jet discharging in still air?

Case description wld 1d Sid 8, deg
Present unstructured results 3.8 3.1 1.22 35.7
Previous structured results*!° 3.7 3.1 1.64 44.6
Experimental data®! 3.6 29 1.40 40.2

*Mier = 1.0, pjec =10 poo, and Tjer = Too.
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Fig. 13 Mach contours in the base region for freejet case; Moo = 0.01, Mjet = 1.0, pjet =10 poo, Tjet = To, and Re =20 X 106,
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Fig. 14 Mach number contours in the base region for the case including propulsive jet; Mo = 0.5, Mjet = 1.0, pjet =3 Poos Tjet =2 Too, and Re =20 X 10°.
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Fig. 15 Mach number contours for the VLS second-stage flight conditions; M. =4.9, Mjet =4.0, pjet =112.0 p oo, Tjet =4.6 T, and Re =20 X 10°.

jet-to-freestream static pressure ratio results in a strong expansion
downstream of the jet exit, with local Mach numbers within the jet
core reaching values as high as 12. The full range of Mach numbers
within the jet is not represented in the labels of Fig. 15 to allow the
reader to see some other features of the flow. Moreover, the rapid
jet expansion at its exit station causes the formation of an oblique
shock wave in the external flow right at the afterbody edge. This
feature can also be seen in Fig. 15.

Conclusions

The transonic flowfield around the VLS forebody was studied
using a viscous turbulent formulation. Comparisons between the
numerical results obtained and the experimental data showed very
good agreement in terms of pressure coefficient distribution, as well
as in terms of the flow features. The results with the turbulence mod-
els obtained in the present work do not present the overexpansion
and overcompression observed in the inviscid results of previous
work. Moreover, the solutions obtained with the Liou scheme were
in slight better agreement with the experimental results than those
obtained with the centered scheme. Furthermore, the solutions with
the centered scheme and the Mavriplis artificial dissipation model
were closer to the solution with the Liou scheme than the solution
with the centered scheme and the Jameson and Mavriplis artificial
dissipation model.

Afterbody simulations considered cases with and without a
propulsive base jet. The results without a propulsive jet of the present
work were compared with previous structured grid results obtained
by the authors and with experimental data for general cylindrical
afterbodies at zero angle of attack. The present unstructured grid
results were essentially equal to the structured grid results. More-
over, the computational results reproduced the experimental data in
terms of the location of the rear stagnation point. The discrepancies
between computational and experimental values for this parameter
were at most of 13%.

For the cases with a propulsive jet, because the majority of the data
in the literature are concerned with freejets, the simulations initially
performed considered jets discharging in a still atmosphere. Be-
cause of specific details of code implementation, this was simulated
considering an external freestream with M,, =0.01. An extremely
good qualitative agreement was obtained with the available experi-

mental results for freejets and the quantitative comparison of results
also indicated good agreement with the available data. Discrepan-
cies between the present computational results and the experimental
data were less than 13% for all parameters analyzed. Results with a
nonzero freestream Mach number also indicated a very good quali-
tative agreement with the type of behavior that should be expected in
this case. Although there was no experimental data to compare the
present results, as in the freejet cases, the solution structures were
essentially the same ones observed in the freejet cases. Furthermore,
the results obtained, which also included realistic VLS second-stage
flight conditions, were also compared with the structured grid cases
of previous work by the authors, and, again, very good agreement
was obtained with these results. Therefore, the contribution of the
present work rests mainly on the development of a simulation ca-
pability that allowed the treatment of realistic flowfields of interest
for the aerodynamic analysis of general satellite launcher configu-
rations. In particular, this capability has been applied to a detailed
study of axisymmetric VLS flows, which has added to the under-
standing of the aerodynamics of this vehicle.
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